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Abstract

A general equation for the apparent polydispersity is derived for the most common of the field-flow fractionation (FFF)
techniques. The apparent polydispersity is the polydispersity that appears from the analysis of a monodisperse colloid sample
if zone broadening is not removed from the calculated particle size distribution. Flow and electrical FFF are predicted to
exhibit three-times the apparent polydispersity of sedimentation FFF for particle size analysis. Using a similar theoretical
approach, the outlet response (bandpass filter function) of an FFF experiment is derived for a uniform number density of
injected particle diameters. It is found that the bandpass filter function can be closely approximated by the same equations as
that given for the apparent polydispersity. [ 1999 Elsevier Science BV. All rights reserved.
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1. Introduction

Field-flow fractionation (FFF) methods are ex-
tremely useful in the characterization of colloidal and
polymeric materials by providing particle sizing and
molecular weight analysis for the colloid and poly-
mer scientist. These analysis techniques have recent-
ly been augmented by the use of detectors such as
the multi-angle laser light scattering (MALLS) de-
tector [1-8] alowing for the evaluation of the
particle size or polymer molecular weight indepen-
dent of the FFF theory [9,10] that has been de-
veloped and refined for many years. The use of an
FFF apparatus as a ‘‘sorting”’ device prior to de-
tection should create a relatively narrow dispersity
population of colloid or polymer in the detector flow
cell. This should increase the accuracy of the detec-
tor and alow averages to be detected and accumu-

lated for total size or molecular weight distribution
analysis.

In a recent paper [6] it was shown how colloidal
particles of both narrow and medium polydispersity
could be quantitatively sized by flow FFF coupled to
an on-line MALLS detector. If one examines the
resulting temporal fractograms of these particles with
a simple detector, for example the scattering am-
plitude at the 90° angle, the width of the fractograms
are not indicative of the true particle size distribu-
tions [6]. This is due to the fact that non-equilibrium
zone broadening is inherent in the resulting frac-
tionator signal so that even a monodisperse particle
causes a relatively broad signal to emerge from the
fractionation process.

If the temporal signal of the fractionator is used to
construct a particle size distribution for monodis-
perse and medium dispersity particles without de-
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convolution of the zone broadening [11,12], the size
distribution will artificialy reflect this broadening
and not the true particle population [12]. This artifact
has been previoudly referred to as ‘* apparent polydis-
persity”’ [12]. The apparent polydispersity is defined
[12] as the artifactual polydispersity that is quanti-
tated in a size distribution measurement when a
monodisperse colloid is fractionated and the zone
broadening due to non-equilibrium processes is not
removed through computer methods. The apparent
polydispersity was previously studied for sedimenta-
tion FFF [12] where the high selectivity of this FFF
technique keeps the apparent polydispersity quite
low for all but the lowest levels of particle retention.

A closely related problem is to quantitate the
polydispersity that an FFF technique presents to the
detector at any instant, given an injection of a
uniform distribution of particle sizes or molecular
masses. This gives a measure of the separation
efficacy which is useful in accessing the actual
sample which is delivered to a detector capable of
determining the particle size, such as a MALLS
detector. This is important because the light scatter-
ing detector can bias the resulting size distribution if
the incoming particle stream is too disperse. We will
present this type of analysis in a later paper [13]
where optical calculations based on the Mie theory
of scattering [14,15] are used to simulate the
MALLS process given the polydisperse particle
populations at the fractionator outlet which are
derived in this paper.

The production of narrow dispersity samples that
are present at any temporal instant in the fractionator
outlet is similar to the stationary time process of an
electrical bandpass filter function in that the frac-
tionator should ideally pass only one particle size or
molecular weight at any instant of time. This is
analogous to an ideal or perfect electrical bandpass
filter which should pass only one unique frequency.

In this paper we focus on the comparison of the
apparent polydispersity between the various FFF
techniques using a generalization of theory previous-
ly developed for sedimentation FFF [12]. This is
useful because particle sizing using other fractiona-
tion techniques besides sedimentation FFF, for ex-
ample flow and €electrical FFF, are becoming more
popular. In addition, only a fraction of these FFF
instruments are used with a MALLS detector so the

issue of comparing the apparent polydispersity from
the flow and electrica FFF techniques with sedi-
mentation FFF is quite important and revealing. By a
simple extension of the theory for particles, the
apparent polydispersity can be used to describe the
analysis of polymer molecular weights by thermal
FFF.

Furthermore, numerical methods and theoretical
analysis will be described which can be used to
estimate the instantaneous bandpass function of an
FFF experiment. This bandpass function will be
compared with the apparent polydispersity and will
be found to be nearly equal. The rationale for this
agreement lies within the mathematics of convolu-
tion processes, as will be demonstrated. Finaly, it
will be shown how the particle size distribution of
fractionated samples collected for a finite duration
from an FFF apparatus can be calculated.

2. Results and discussion
2.1. Apparent polydispersity of particles

In what follows, the standard treatment of ideal
Brownian particle FFF is used [10]. The approxi-
mations inherent in this theory include the absence of
steric  effects, particle—particle and particle—wall
interactions and concentration effects. Furthermore,
the aspect ratio of the channel is assumed to be large
enough that edge effects are absent [10].

In FFF the polydispersity contribution to the
length-based peak variance, o—i, is given as [16]:

dz\2
oi-(G@) o &
where z is the axia distance down the channedl, d is
the particle diameter, and o7 is the variance of the

particle diameter number density function. Using the
chain rule it has been previously shown that [16]:

AN ,
75 =\aRdr dd/ 7¢ ()
where R and A are the well known retention ratio
(equal to the ratio of void timet, to retention timet,)
and non-dimensional mean layer thickness, respec-
tively [9,10,16]. The first term, dz/dR, is simply
L/R, where L is the channel length. The middie term
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will be manipulated shortly. The last term can be
easily generalized as the theory of retention for
electrical, flow and sedimentation FFF gives the
mean layer thickness as [9,10]:
Af
= (3)

where n is an integer and A’ is a lumped term which
is unique for each subtechnique of FFF mentioned
above. It is known that n is exactly equal to the
values of 1, 1 and 3 for electrical [17], flow [18], and
sedimentation FFF [19], respectively. These are also
the values of the asymptotic selectivities, S, of each
FFF subtechnique defined as:

_|d|ogtr|
¢~ | dlogd

(4)

The last derivative term, dA/dd, can be written as:

di A

ad -~ " "d )

Combining Egs. (2) and (5) gives:

A (@@ e

Further manipulation of Eq. (6) gives:

ri=i(gm) (3) ™

The quantity o,/d is the relative polydispersity
and figures highly in the following equations and
treatments yet to come.

Note that d In R/d In A can be asymptotically
reduced to unity in the limit as R - 0. However, this
approximation is not made because some of the
results will be given at low retention (high R) and
we want to preserve as much accuracy as possible in
this region. This term is easily calculated using
derivative estimation of the polynomial interpolated
logarithm values via Lagrange interpolation [20] and
is equal to 0.9226 for R=0.2 and 0.9642 for R=0.1.
Some approximations of d In R/d In A are known in
the low retention (high R) region [21] but these will
not be considered further because of the ease in
which this term can be computed using numerical
methods.

Eq. (7) gives the zone variance, af), as afunction

of the FFF experimental variables and the sample
variables o, and d. Therefore, if o,=0 then o,=0as
expected. However, due to non-equilibrium zone
broadening, which has its origins in diffusion, a
monodisperse particle will till give a fractogram
showing broadening. If the broadening due to a
monodisperse particle population is equated to o
through o, a fase value of o, will be calculated.
This is exactly what we want to do here as this tells
us about the inherent quality of the calculated
particle size distribution.

The final step for this treatment is to equate the
length-based zone variance due to non-equilibrium,
o?,, with the length-based zone variance due to
polydispersity, oﬁ. We then solve for the apparent
polydispersity, o,/d, that would result when a mono-
disperse particle causes zone broadening and this
broadening is interpreted as having its origins in
polydispersity.

From FFF theory [10,22,23]:

2

o, = L = XL ©)
where H, . is the plate height due solely to non-
equilibrium, w is the channel thickness, (v) is the
average fluid velocity in the channel, D is the
diffusion coefficient, and y is the non-dimensional
non-equilibrium parameter [23] equal to 24A° in the
limit as R- 0.

The diffusion coefficient can be further equated to
the fundamental variables for dilute colloidal materi-
als through the Stokes—Einstein equation [24]:

B ke T
" 3md ©)

where k; is Boltzmann's constant, T is temperature,
and 7 is the solution viscosity.

The plate height due to molecular diffusion is not
included in this treatment because it is generaly
negligible in the study of colloidal materials. Hence,
equating Egs. (7) and (8) and substituting Eq. (9) for

D yidlds:
w/dInAY ( 3myn(v)d 2
n (d In R)( Lk, T (10)

94} _
( d )ap -

Inspection of Eq. (10) reveals that the sedimenta-
tion FFF technique should have one-third the appar-
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ent polydispersity of the other FFF techniques be-
cause n is in the denominator. Furthermore, reduc-
tion in the flow-rate through (v) will not help much
in reducing the apparent polydispersity because of
the one-half power dependence.

Eqg. (10) is evaluated under a number of con-
ditionsin Fig. 1 as a function of the retention ratio R
using n equal to 1 for electrical and flow FFF and 3
for sedimentation FFF. As can be seen from Fig. 1,
the apparent polydispersity is rather low for sedi-
mentation FFF, as was previously given in exactly
the same form of representation in Ref. [12]. How-
ever, we now see that these other forms of FFF give
rather high apparent polydispersities. For example at
R=0.1, or 10 column volumes of retention, a 0.2 wm
diameter particle in electrical or flow FFF appears to
give 0,,~0.02 um where o, is the standard devia-
tion of the apparent particle size density function. At
first this does not appear to be that large but if one
plots this as a Gaussian density function one realizes
that the baseline of the function at the =3¢ level
extends from 0.14 pm to 0.26 wm, which is large in
typical colloidal particle applications. This is con-
trasted with sedimentation FFF where under the
same conditions except for n=3, one third the zone
broadening is obtained. Hence o,,~0.0066 pm
which gives a baseline of the Gaussian density
function at the =3¢ level starting at 0.18 wm and
ending at 0.22 wm. Therefore, particle characteriza-

Apparent Polydispersity

L L
0.00 0.04 0.08 0.12 0.16 0.20

Retention Ratio R

Fig. 1. The apparent polydispersity, (o,/d),,, as a function of the
retention ratio R for n=1 (the top three curves) and n=3 (the
bottom three curves) for the particle diameters of 0.2 pm (—), 0.1
wm (---) and 0.05 pm (- - -). The flow-rate F=1 ml min™*,
L=60 cm, w=0.0127 cm, (v)=0.656 cm s %, T=296 K and
n=0.01 Poise.

tion with sedimentation FFF gives less apparent
polydispersity values than electrical or flow FFF.

One can compare the various FFF techniques in a
more graphic way by plotting the broadened and
unbroadened size distributions for monodisperse
particles. These are shown in the following figures
and produced in a manner similar to that described in
Ref. [12], except for the application of the theory
which uses n=1 or n=3. Furthermore, it is assumed
that a monodisperse particle population will broaden
in the time domain according to a Gaussian density.
This is accurate for R<0.2 as determined by Monte
Carlo smulations [25]. However, for the work
described in this study Gaussian broadening will be
assumed to occur throughout the elution range. All
of the caculations in this paper use computer
programs written with 64 bit arithmetic precision.
The number of significant digits in the independent
variables reported here is at least good to 10 places
but for simplicity we report these with just enough
digits to indicate the number. The dependent (calcu-
lated) variables are reported with four places of
precision for convenience.

This comparison is shown in Figs. 2 and 3. In both
figures, A’ is calculated for n=1 and n=3 given the
retention ratio, R ., at the largest particle diameter.
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Fig. 2. The broadened (- - -) for n=1, broadened (- - —) for n=3,
and the origina (—) particle size distributions from three mono-
disperse particle populations with diameters of 0.13, 0.17 and 0.21
pm. The retention ratio R is chosen to be 0.05 for the largest mean
particle size. The R values for the smallest mean diameter are
0.1991 for n=3 and 0.07991 for n=1 and the R values for the
middle mean diameter are R=0.09281 for n=3 and R=0.06151
for n=1. Other conditions as in Fig. 1. The results are normalized
so that the number concentrations at the largest particle diameter
peak are equal.
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Fig. 3. The broadened (- - -) for n=1, broadened (- - —) for n=3,
and the origina (—) particle size distributions from three mono-
disperse particle populations with diameters of 0.17, 0.19 and 0.21
wm. The retention ratio R is chosen to be 0.05 for the largest mean
particle size. The R values for the smallest mean diameter are
0.09281 for n=3 and 0.06151 for n=1 and the R values for the
middle mean diameter are R=0.06710 for n=3 and R=0.05516
for n=1. Other conditions are as in Fig. 1. The results are
normalized so that the number concentrations at the largest
particle diameter peak are equal.

The value of R, used in these studies is noted in
the figure captions. The constraint of keeping R,
constant while varying n forces the other particle
diameters to be compared at different values of R
which is a biased comparison, but nonetheless in-
formative. For example in Fig. 2, particle diameters
of 0.13 wm, 0.17 pm and 0.21 wm are shown for
n=1 and n=3. For the largest particle diameter and
most retained peak, very little extraneous broadening
is shown for the case of n=3, however, the n=1
case shows the expected larger amount of broaden-
ing. For this peak both the n=1 and n=3 case are
caculated at R=0.05, alowing for an unbiased
comparison. However, the retention of the peaks at
0.13 pm are caculated at R=0.1991 and R=
0.07991 for n=3 and n=1, respectively and the
peaks at 0.17 wm are calculated at R=0.09281 and
R=0.06151 for n=3 and n=1, respectively. Be-
cause of these differences in R, the n=3 result
actually appears to be more broadened than the n=1
result for the smallest particle diameter. As shown in
Fig. 1, the apparent polydispersity for n=3 and
R=0.2 for d=0.2 um islarger than the case of n=1
and R=0.08. Hence, it is no surprise that for
constant field strength these choices of particle
diameters indicates that the n=1 result is better in

terms of least broadening of the particle size dis-
tribution of the smallest particle. It is easily seen
though, for the two larger particle sizes, that the
n=3 result shows less broadening of the calculated
particle size distribution.

For three particles with closer diameters, the
superiority of the n=3 result is further evident from
Fig. 3. The retention ratios of the two smaller size
particles are R=0.09281 and R=0.06710 for n=3
and R=0.06151 and R=0.05516 for n=1. However,
in this case the superiority of the n=3 result which
clearly shows three distinct distributions is contrasted
with the n=1 case where the three distributions are
barely visible.

These results highlight the observation that as n
increases, the need for field programming aso
increases. This is because higher n techniques will
spread the results of constant field fractograms
farther over the elution space. These results indicate
that it is easier to get a wider range of particle sizes
fractionated with low n techniques although at lower
resolution. For techniques other than FFF techniques
where n is smaller than unity, the whole experiment
can be conducted in a short time; the problem is that
one usually sacrifices resolution here and the particle
fractionation is carried out with lower quality.

2.2. Apparent polydispersity of polymers

We have examined the apparent polydispersity
concept for colloidal particles. We can use exactly
the same concepts for the analysis of the apparent
polydispersity of polymers where molecular weight,
not particle diameter, is the variable of interest.
Similar to Egs. (1) and (2) we denote the peak
variance due to polydispersity as:

dz \2
7i=(a) b an
where M is the molecular weight of the polymer and
o?, is the variance of the molecular weight number

density function. This can be expanded in a manner
similar to Eq. (2) as:

dz dR dA \?2
=) 7 (12)

The molecular weight of polymers can be obtained
in principle using a number of different FFF tech-
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nigques, however, we focus here on thermal FFF. One
can use thermal FFF for particle sizing [26] athough
this application is not completely understood. In
thermal FFF the molecular weight dependence on
retention through A is expressed empirically [27] as:

A/
M Su

A= (13)

where S, is the molecular weight-based selectivity
defined as:

_ | dlogt,
= | diogMm (14)
Eqg. (5) is now written for thermal FFF as:

da A

Y] (15)

Combining Egs. (12) and (15) and utilizing the
previous results for the first two derivative terms in
Eq. (12) gives:

dInR\2/ gy, \2
“5:S§L2<d|n )\) (%) (16)
The final step is to equate the broadening due to
non-equilibrium processes, o,, from Eq. (8), with

Eg. (16) to obtain the apparent polydispersity in
molecular weight. This then gives:

1/2
(7). =5.(ana) (i5) @
a S,\dInR/\ LD

This gives a general equation for the molecular
weight-based apparent polydispersity. For the case of
thermal FFF the diffusion coefficient is typically
specified in a semi-empirical form [28] that includes
the molecular weight and temperature dependence:

1
D= Wexp (A+CIT) (18)

where A= —3.6851, b=0.552 and C=—1360 for
polystyrene in ethyl benzene [28]. Note that T in Eq.
(18) is typicaly the temperature at the mean layer
height. The cold wall temperature in thermal FFF is
fairly close to this and may be substituted with little
error. In addition, S,=~b [27]. Substituting Eg. (18)
into Eq. (17) yields:

b 1/2
(%)ap - %(g :: ?z) < LengZ>TC/n>
(19)

Hence, the apparent molecular weight polydis-
persity can be formulated in a similar manner to that
for the other FFF techniques where colloidal particle
size was previously investigated.

Evaluation of the apparent polydispersity, oy, /M,
as a function of the retention ratio R for a number of
different molecular weights of polystyrene in ethyl
benzene is shown in Fig. 4 as would be analyzed by
thermal FFF. We show higher R values here, as
opposed to Fig. 1, because in thermal FFF one can
get more useful information at higher R values than
from the other FFF techniques where colloidal
particles are fractionated. This is due to the faster
transverse movement of polymers within the zone
due to larger diffusion coefficients as contrasted with
colloidal particle fractionation where smaller diffu-
sion coefficients are encountered.

As is evident from Fig. 4, lower R values must be
used to avoid very high apparent polydispersities for
monodisperse polymers and for high-molecular-
weight materials. However, comparison of Figs. 1
and 4 at constant R reveals that thermal FFF appears
to have similar apparent polydispersities to that of
flow FFF, athough the comparison is biased because
we are comparing particles and polymers.

We have shown how simple equations can be used

Apparent Polydispersity

L s
0.00 0.10 0.20 0.30 0.40

Retention Ratio R

Fig. 4. The apparent polydispersity, (o,,/M),,, as afunction of the
retention ratio R for thermal FFF of polystyrene in ethyl benzene.
The molecular weights used in the calculation are: 1 000 000
(=++-), 500000 (—--), 200000 (- - -), 100000 (---) and
50 000 (—). Other conditions as in Fig. 1.
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to contrast the apparent polydispersity quantity from
the various FFF techniques. In that regard, a con-
venient comparison can be made between these FFF
techniques with regards to the fidelity of particle
sizing when monodisperse and narrow dispersity
materials are to be characterized. Overal, the mag-
nitude of the apparent polydispersity is fairly low,
especidly when experiments are run at field
strengths which yield retention ratios less than 0.1.
Under this constraint, the FFF techniques are pre-
dicted to yield apparent polydispersities below 5 to
10% without deconvolution. This is quite good and
provides a basis for evaluating the quality of particle
sizing using this set of techniques. The apparent
polydispersity approach can also be applied to other
separation systems, for example size-exclusion chro-
matography (SEC) and capillary hydrodynamic frac-
tionation (CHDF). Thus, the apparent polydispersity
concept provides an alternative to other performance
metrics such as the fractionating power [29,30] and
the specific resolution factor [31] for characterizing
the efficacy of particle and polymer fractionation
systems.

2.3, Time—size matrix

For the theoretical treatment that follows a con-
venient formulation can be obtained by using a
matrix which expresses the temporal concentration
profile in each column for a given particle diameter.
This time-size number concentration matrix, A;;, is
composed of mrows i €1:m at timet, and k columns
jElk at particle diameter d,. The matrix is syn-
thesized in the following manner. First, the largest
particle diameter, d, ., in the injected particle size
density function is specified along with the retention
ratio minimum, R, of the largest particle. Next,
Anin 18 calculated from R, using a simple R- A
inversion algorithm [32]. This inversion agorithm
utilizes interpolation on a look-up table which is
produced from the well-known forward relationship
AR by:

1 2
R=6A coth (5> — 12 (20)
From A, and the corresponding d,,.,, EQ. (3) is

used to calculate A" when n is specified according to
the desired FFF technique. The particle size number

density function used here is uniform with equal
numbers of particles for 0<d=d,,,.

The matrix is synthesized by calculating Gaussian
temporal densities at each particle diameter d,.
Hence, each of the k diameters is sequentially chosen
and represented as a delta function density of particle
diameter, 8(dj’), the corresponding transformation of
d/ - A-R-t/ is made, and the temporal zone
broadening allows the construction of the time—size
matrix as.

AL —t-y)? o1
ij_\/ZTa]exp 20? (21)

]

In Eq. (21) o; is the temporal Gaussian standard
deviation calculated at each particle diameter d;. The
quantity o; is calculated as follows.

The plate height in FFF is dominated by non-
equilibrium (Taylor dispersion) processes. The plate

height contribution from non-equilibrium, H,,, is
obtained by modifiying Eq. (8) and is given as.

2
H,, = 2L (22)

The plate height is determined from experiment
as.

H= L<?> (23)

and equating Egs. (22) and (23) and rearranging
gives the result that:

2 12
2_ XYW (v)tj

o D (24)
Substituting the Stokes—Einstein equation given in

Eq. (9) into Eq. (24) gives:

2 12
,  3myw ()t{ “nd,

7y = Lk, T

(25)
noting that y is evaluated at the A which corresponds
tot/ andd,.

The construction of A;; then alows the determi-
nation of the particle size density function at any
time t,. The particle size density function is just the
row of A; a t; which we denote as N(d))|,, the
particle diameter number density at constant time t;.
Furthermore, the particle diameter density of a



96 M.R. Schure / J. Chromatogr. A 831 (1999) 89-104

collected aiquot which is collected between times t,
and t;,, is simply:

Gy
N(dj)ﬂf”’:f pAijdt (26)
1 t|
or given in a less accurate discrete form:
NCHEEEDIY (27)

The signal from a MALLS detector or a UV
chromatographic detector employed as a tubidity
detector can be given as a function of time as:

f(t,, 0) = 2 A, C(0) (28)
j=1

where f(t;, 0) is the detector signal at time t; and
scattering angle ¢ and C;(¢) is the extinction coeffi-
cient which is dependent on the particle diameter, the
particle and solution refractive indices, and the
incident scattering angle [14,15].

The time—size matrix can be evaluated on personal
computers with very short computation times. The
matrix size of 1000 by 500 is used throughout this

paper.
2.4. Bandpass function

The time—size matrix for FFF systems which have
n=1in Eq. (3), for example flow and electrical FFF,
is shown in Fig. 5. The time-size matrix for n=3
which is characteristic of sedimentation FFF is
shown in Fig. 6. The dark area of these matrices is
where the number concentration of particles is
contained. The white area represents particle con-
centrations at least 1000-times less than that in the
center regions of the dark areas.

As can be seen from these two figures, the n=3
case in Fig. 6 has much better (narrower) bandpass
characteristics after a few minutes (t,~1.5 min) than
that shown in Fig. 5 for the n=1 case. Then=1 case
in Fig. 5 also appears to be much more constant in
bandpass across the elution range than doesthe n=3
case shown in Fig. 6. As was discussed earlier, at
constant field the n=3 broadening is large in the
early stages of the fractogram compared with the
broadening in the later (R<0.2) stages of the frac-
togram. This result again demonstrates the critical

Time (minutes)

T T I ]
0.0 0.1 0.2 0.3 0.4 0.5

Particle Diameter (microns)
Fig. 5. The time-size matrix for n=1, R ;,=0.04, d,, =0.5 um,

T=298 K, w=0.0127 cm, F=1 ml min™*, (v)=0.656 cm s *,
and »=0.01 Poise.

need for field programming with sedimentation FFF
and also illustrates the extremely large broadening
that takes place near the void peak for smaller
particles. This can be somewhat compensated ex-
perimentally by running at high initial field; we will
consider this aspect in a later paper in this series

Time (minutes)

T T T T 1
0.0 ° 0.1 0.2 0.3 0.4 0.5

Particle Diameter (microns)

Fig. 6. The time—size matrix for n=3. All other parameters as in
Fig. 5.
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which examines the bandpass function with field
programming for both n=1 and n=3 systems [33].

Although the mathematical analysis has stated that
Gaussian broadening occurs in the time domain, a
peak shape analysis of the broadening amplitude in
the particle diameter domain is easily accomplished
by taking row dlices of the time—size matrix which
gives N(d,)|, . These slices are shown in Fig. 7. As
can be seen from this figure, all zones except for the
earlier eluting zones of the n=3 calculations appear
to be very close to Gaussian in shape. The n=1
zones appear to be mostly constant in width, as was
seen in Fig. 5. The later eluting zones for n=3 are
digtinctively less broad than the zones for the n=1
case, as was also seen from Figs. 5 and 6.

2.5, Outlet and apparent polydispersity

Through the use of moment analysis [34] it is an
easy task to take the time—size matrix, A;;, and plot
the standard deviation of the particle diameter den-
Sity at constant time, Ud|_tw as a function of the
average particle diameter, d]ti. This is mathematical-
ly expressed as:

dmax
_ A;d;dd,
0
dly =g (29)
A;dd,

0

and

Relative Concentration

¢ 1da) 2
0.20 0.30 . 0.50

Particle Diameter (microns)

Fig. 7. The diameter distribution at various time dlices for both
n=1(—)adn=3 (---). Thetimes are 5, 10, 20 and 30 min for
both sets of results and are in order of smallest to largest particle
diameter. The area under all of the density functions is equal. The
conditions are as in Figs. 5 and 6.

dmaX [—
[ Afa, -~ dl, g

]

‘7'd|ti = d (30)

max

A, dd,

0

Additionally, we can make the dependent variable
non-dimensional, facilitating easier comparison, by
taking the ratio of o,|, to d|, asafunction of d|, as
shown in Fig. 8. This ratio will be referred to as the
outlet polydispersity.

Four curves are shown in Fig. 8. We start our
comparison with the curves derived from Egs. (29)
and (30) which show the outlet polydispersity of the
time—size matrix given for n=1and n=3 in Figs. 5
and 6. In both cases the outlet polydispersity de-
creases to levels below 0.1 at the higher particle
diameters but for both cases the outlet polydispersity
is quite high at lower particle diameters. The in-
formation in Fig. 8 is contained in Figs. 5 and 6 but
is simply presented in a different way in Fig. 8.

Also shown in Fig. 8 is the comparison of the
outlet polydispersity with the apparent polydispersity
given in Eq. (10). Eqg. (10) has an implicit relation-
ship in A; i.e.,, a particle diameter d is chosen and
then A is obtained from Eq. (3) to give y and R. We
utilize d|, from Eq. (29) as d in Eq. (10).

The apparent polydispersity is seen to be an
excellent fit to the outlet polydispersity for n=1
throughout the elution range and for the n= 3 result
in the higher retention region. This agreement was
not expected. To further investigate this agreement

Outlet and Apparent Polydispersity

020

0.00 .
0.00 0.10 0.20 0.30 0.40 0.50

Particle Diameter (microns)

Fig. 8. The outlet polydispersity for n=1 (—) and for n=3
(— - -) plotted along with the apparent polydispersity for n=1
(---) and n=3 (- - -) as a function of the diameter calculated
using Eq. (29). The conditions are as in Figs. 5 and 6.
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between two seemingly unrelated quantities, the
results of Fig. 8 can be plotted with an independent
variable axis which more resembles the elution
experiment. Hence, in Fig. 9 the outlet and apparent
polydispersities are plotted as a function of the
number of column volumes which is proportional to
time and equa to t,/t,. The number of column
volumes is the reciprocal of R.

The agreement now appears to be much better and
the deviation occurs primarily below five column
volumes (R>0.2) where it is known that the re-
tention theory and zone broadening theory tend to
produce inaccurate results [25]. However, the as-
sumption of Gaussian zones at these low retention
levels is certainly the largest source of error in
synthesizing the time-size matrix. The error is
severe enough in this region that with small particle
sizes there is a finite probability that particles elute at
zero time because of error in o a very small
retention. This is shown very clearly in Fig. 6. Other
sources of error exist but are of minor considerations
in this comparison. Hence, both the analytical theory
for polydispersity given in Eq. (10) and the time—
size matrix have large errors in the low retention
region. These errors are compounded in the n=3
case because so much of the small particle sizes are
contained in this region. The disagreement at higher
retention is certainly due to the truncation of the
particle size density at d,,,.

The outlet polydispersity and the apparent polydis-
persity appear to be nearly equal in the medium and
high retention region. The reason for this is as

080 |

0.60 [~

Outlet and Apparent Polydispersity

'h’“""m-.._._
0.00 PR T N TSI R S s e i e

0 5 10 15 20 25 30

Column Volumes (1/R)

Fig. 9. The same results as in Fig. 8 except the independent
variable axis is derived from the retention time axis and plotted as
the number of column volumes.

follows. As seen from Fig. 10, the development of
the apparent polydispersity concept can be repre-
sented as a series of operations on density functions.
First, a delta function diameter density, 6(dj’), is
converted into the time domain using the transforma-
tion d/ - t/, giving &(t]) as shown in Fig. 10. Next,
this density is broadened through convolution with a
Gaussian function. This step is written as:

N 1 —(t —t)? 31
(ti)|dj’ \/Zm] exp 20'12 (31)
where N(ti)|dj, is the relative number concentration
which is similar to the columnsin Eqg. (21) and ojz is
given by Eq. (25). Next, the time axis is converted
back to the diameter axis using the transformation
t, - d,. This then gives a density function whose
standard deviation could be obtained by moment
analysis but is approximated analyticaly by o in
Eqg. (10).

The development of the outlet polydispersity is

Apparent Polydispersity

—~ d>t convolution __ t>d ~
2 —c —> 2 —Z
B Wi B
d t t d
Outlet Polydispersity

=1

convolution _
—_—

| |

N(d)
N(t)

N(t

convolution

N®
’ .H)
N(t

N(©)
N

onvolution

N(t)
(<]
N(Y)

N(d)

t
t

¢ constant t
d

Fig. 10. The unit operations which show the calculation of the
apparent polydispersity and the outlet polydispersity.
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also shown in Fig. 10 as a series of operations on
density functions. A uniform number density of
diameters is chosen, as discussed previously. This
density is represented as a series of finely spaced
delta functions such that 5(dj’) equals unity for 0<
d'=d,...

JAs shown in Fig. 10, individual delta functions are
now placed on a temporal axis through the trans-
formation d/ ~t/ and labeled as j=1, 2, 3, 4,... to
show the breakdown of the uniform size density into
a series of delta functions. The same temporal
convolution operation is then performed as is con-
tained in each column of A;;, as shown in Fig. 10.
This results in a series of temporal Gaussian-based
curves which have means and standard deviations
which are dependent on the particle diameter dj’.

The particle size density at the outlet is just the
line shown in Fig. 10 at constant time, t;, from which
the diameter density is contributed from each in-
dividual temporal fractogram for j=1, 2, 3, 4,...; this
is expressed as.

N = U Vi 2
( j)|ti \/ZTO']- exp 201_2 (32)
noting that tj’ and o; are functions of d..

One can easily see that Egs. (31) and (32) appear
to be the same equation noting that Eqg. (31) gives
the number concentration as a function of time at
constant diameter and Eq. (32) is the number
concentration as a function of diameter at constant
time. These equations are evaluated differently; in
Eq. (31) ¢; and tj’ are constants while in Eq. (32) a
different o; and t; are obtained at every value of the
independent variable, d;. Furthermore, in Eq. (31) t;
is not constant while in Eq. (32) t; is constant.

For n=1 the mapping of t, »d, in Eq. (31) is
approximately linear as will be shown below in Eq.
(39). Furthermore, if o; is approximately constant for
n=1, as it appears from Figs. 5 and 7 (it will be
shown that o; is approximately constant for n=1
from theory given below), then N(t,)|, in Eq. (31)
should convert to N(d;) in a linear manner. In this
case Eq. (31) will be linearly converted to N(d;) and
agreement between the apparent and outlet polydis-
persity should differ at most by a constant factor.
However, for the mapping of t, » d, whenn=3 or in
general when n#1, the non-linear mapping of

t, - d;, as shown below in Eq. (39), should ensure
that Eg. (31) cannot take on a one-to-one corre-
spondence with the form of Eq. (32). In this case
agreement between the apparent polydispersity and
outlet polydispersity will occur only as a limiting
process. Although thisis not a rigorous proof that the
apparent polydispersity and outlet polydispersity are
not equivalent, the differences between the n=1 and
n=3 cases viewed in Figs. 8 and 9 support the
hypothesis that the t — d mappings must be linear and
g; be constant to get nearly exact agreement.

The agreement between the outlet and apparent
polydispersities is sufficient to allow the usage of the
apparent polydispersity as an approximate analytical
solution to the outlet polydispersity for constant field
FFF, under medium to high retention conditions.
This alows one to mathematically explain the ob-
servation shown in Fig. 5 that the particle size
broadening, ad|ti, appears to be constant throughout
most of the elution range for the n=1 case. This is
accomplished as follows.

Using the approximations y=24A° and dln A/
dIinR=1 in Eq. (10) gives upon rearranging:

6 2 1/2 /2
o= 225 o) (33

Since the product Ad=A" when n=1, Eq. (33) can
be written specifically for the n=1 case as:

277, v 1/2

oy = 6W(A’)3’2<—LIZ<T>> (34)

Eq. (34) shows the result that o is independent

of particle diameter and only dependent on column

operating and geometric parameters for techniques
such as flow and electrical FFF.

This is not the case for sedimentation FFF where

n=3 and the (Ad)*'? term in Eq. (33) now becomes

(1)*?A so that:

27T7]<U>/\' 1/2
"dZZW(—LkBT ) A (35)

Here o, is proportional to A; this denotes that o is
proportional to d~® and larger particles will have
much smaller outlet o, as shown in Figs. 6 and 7. If
the approximation R=6A, which is valid at high
retention (low R), is utilized in Eg. (35) one
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Relative Concentration

0.00

Particle Diameter (microns)

Fig. 11. The particle diameter density for various fraction collec-
tion accumulation times of 0 min (—), 1 min (- - -), 4 min (- - -),
and 10 min (- -- =). The smaller diameter collections are with
n=1 and start at 10 min. The larger diameter collections are with
n=3 and start at 15 min. All other conditions as in Fig. 5.

produces the simple result for constant field FFF at
n=3 that:

%(27777@)/\’ >1’2

=3\ kT (36)

Oy

where it is seen that o, will be inversely proportional
to the retention time t,. Hence in flow and electrical
FFF, the standard deviation (and variance) of the
outlet particle diameter density function is predicted
to be time invariant while for sedimentation FFF the
standard deviation of the outlet particle diameter

Table 1

density function is predicted to be inversely propor-
tional to time.

2.6. Fraction collection

The calculation of the outlet particle size density
when the outlet particles are accumulated for a finite
time period, for example during fraction collection,
is accomplished through the use of Eq. (26) or Eq.
(27). Examples of the particle size density functions
from this accumulation process are shown in Fig. 11
where the accumulation time is varied. As seen from
Fig. 11, the diameter density functions appear to be
Gaussian in shape except for the two examples
where 10-min accumulation times are used. Also
seen from Fig. 11 is that the average diameter shifts
to larger diameters as the accumulation time in-
Creases.

The moment analysis of these curves is given in
Table 1. The first moment gives the centroid average
diameter and the sguare root of the second moment
gives the standard deviation of the size density
function. In addition to the moment analysis, ana-
lytical equations can be derived which approximate
the first moment and the standard deviation derived
from the second moment. We derive these equations
now. _

The average value, f, of atime-varying continuous
function f(t), can be obtained between the temporal
limitst, and t;,, as:

Evaluation of the average diameter and standard deviation from the zone collection shown in Fig. 11

Collection time dfi*P (um) o li ™" (um) dfi*P (um) o li ™" (um) % Deviation of % Deviation of
range (min) using moments  using moments  using Eq. (40)  using Eq. (41)  Eq. (40)* Eq. (41)°
For n=1 zones
10 to 10 0.1262 0.01813 0.1330 0.01934 5.429 6.646
10to 11 0.1326 0.01861 0.1397 0.01971 5.363 5.942
10 to 14 0.1527 0.02401 0.1596 0.02469 4.565 2.828
10 to 20 0.1926 0.04276 0.1995 0.04299 3.593 0.5496
For the n=3 zones
15 to 15 0.3873 0.02046 0.3681 0.01615 —4.950 -21.07
15 to 16 0.3921 0.01979 0.3722 0.01580 —5.086 —-20.14
15 to 19 0.4052 0.02044 0.3836 0.01676 —5.341 —18.02
15 to 25 0.4269 0.02738 0.4042 0.02329 -5.312 —14.96

“Deviation from the moment treatment given in the 2nd column.
® Deviation from the moment treatment given in the 3rd column.
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f= —tJ.

f _l”pf(t) dt (37)

i+p
The average diameter can thus be written as:

— 1 tivp
e = —— f d(t) dt (38)
i+p it

If we combine R=t,/t,, the approximation R=6A,
and Eg. (3), then the diameter can be expressed
explicitly as a function of time such that

d(t) =<6::' >1m (39)

Substitution of Eq. (39) into Eq. (38) yields after

integrating:
1 S 1 {t(1+1/n)
to—tL to 1+ 1/nli+p

_ ti(1+1/n)} (40)

L
d|t: b=

The analytical treatment for the standard deviation
(equal to the sguare root of the variance or second
moment), 0'd|::“’, of the fraction collected between
timest, and t;, } is developed as follows. For n=1
systems, oy is time invariant, as discussed above.
Hence the response of collecting a zone between
timest, and t;,, can be considered a linear convolu-
tion [35,36] of the window function, W;, t;. ), and
4. The window function W(t;, t; .. ,) =0 except in the
region t; =t=t,, , where W(t, t,, ,)=1. The window
function represents the finite collection time of the
eluting zone. For time-invariant functions which
have been convolved, the total variance of the
convolution product is the sum of the individual

function variances [35,36]. Hence,

o =\og+ o (41)

where aft is the variance of the finite sampling
window which is known [37] to be equal to (t;,,—
t)?/12.

This treatment is more approximate for the n#1
cases because the broadening will no longer be time
invariant, as discussed above, and as seen in Figs. 6
and 7. This means that the simple sum of variances
discussed above has a more complex meaning and is
much more difficult to obtain analytically. For the
n=3 case one can take the average of o, between

the two time limits, as given in Eq. (37), and use that
vaue for oy, which will be shown shortly. In some
respects, it may be possible to analytically derive a
better approximation for o, when n=3 for finite
accumulation times. However, it is so simple and fast
to just use a computer program which calculates a
moment analysis on row sums of the time-size
matrix that it hardly seems worth the effort to dwell
on approximations of this kind unless they produce
insight into the separation process. In addition, the
computer program approach allows one to insert an
experimental particle size density function in place
of the uniform density used as the basis for the outlet
polydispersity. In this manner, one can model a real
fractionation process without deriving equations that
pertain only to a unique size distribution and ex-
amine the resulting size density when finite collec-
tion times are utilized.

Substituting Eq. (36), which gives o, as afunction
of time for the n=3 case into Eq. (37) yields an
average o, as.

Wi, 2mn{v)A’ 1’2| Livp
3, —t)\ LkgT "\t

(42)

Ed'::ﬂj =

This will be used in Eq. (41) for the time-variant
n=3 case.

The results of Egs. (40) and (41) are given in
Table 1 along with the calculations given more
directly by the moment analysis of the summed
time—size matrix given in Eq. (27). As can be seen
from the numbers for the n=1 case there is good
correspondence between the simple theory given by
these equations and the computed moments. The
percentage deviations shown in Table 1 indicate that
agreement gets better between the cal culated moment
approach and Eq. (41) as the sampling time increases
for the n=1 case. This is because the term in Eq.
(41) which contains the width of the collection
duration, oft, is more heavily weighted for large
collection times and is more accurate than o, from
Eqg. (34). Both the mean diameter and zone width
analytical estimates for the n=1 case are predicted
to be accurate typicaly at the 5% level, which is
useful when fraction collection is needed.

The results given in Table 1 for the n=3 case
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shows a similar accuracy level for the mean diam-
eter. However, the zone width, as measured by the
standard deviation, shows a more severe degradation
in accuracy as compared to the n=1 case. Again,
results get better for a larger collection time window.
Notice also that for n=3 there is areduction in o as
the collection time increases from 0 to 1 min, as
shown in Table 1. This is because the inherent zone
width shown in Fig. 6 decreases with time so that at
longer retention times zones become narrower. This
trend is reflected in both the standard deviation
calculated from moments analysis and in the ana-
Iytical theory for the n=3 case given in Table 1.

2.7. Programmed fields and other quality criteria

From the results given in Fig. 6 and from other
results where the n=3 case is discussed, it appears
that field programming is necessary to compress the
elution range of sedimentation FFF so that smaller
particles have more selectivity and larger particles
have less selectivity. This point has been recognized
previously in FFF studies [29,30] and is one reason
why interest in field programming continues.

The use of anaytica theory for determining
particle size from fast programmed field experiments
is known to give large error due to finite zone
relaxation times [38]. However, simulation methods
[39] can be easily incorporated into the calculation of
the time—size matrix for programmed field FFF [38].
Fast multiprocessor workstations can calculate high-
resolution time—size matrices with a few hours of
computer time. It is this approach that we have
utilized in the continued study of this problem for
programmed field modes of operation [33].

The apparent and outlet polydispersity and the
time—size matrix concepts that have been discussed
in this paper complement other metrics such as the
fractionating power [29,30] and the specific res
olution factor [31] that have been used in other
studies of FFF methodology. In this regard, the
time—size matrix gives a very visua view of the
fractionation process and allows various optimization
criteria for field programming with techniques like
those where n#1 need to be viewed visually. It can
be expected that these polydispersity metrics will be
further utilized in the development of modern FFF
methodology.

3. Symboals

f(t)
ft,, 0)

ne

3 I_m7\_ ~ = -

Z

(d)
NI,

N(d)[

N(t;)

Time-size number density matrix
Constants in the diffusion coefficient
equation for polymers

Optical extinction coefficient as a
function of d; and ¢

Diffusion coefficient

Particle diameter

Particle diameter as a function of time
First moment of N(d;) at time t;

First moment of N(d,) or average
diameter for zones collected between
timest and t;
Maximum particle diameter used in
A;;

Flow-rate

Average value of f(t)

A general time-varying function
Detector signal as a function of time t
and 6

Total plate height

Plate height due to non-equilibrium
Matrix row number index
Matrix column number index
Number of columns in A,
Boltzmann's constant
Channel length

Molecular mass

Number of rows in A;;
Particle diameter number
function

Particle diameter number
function at constant time
Particle diameter number density
function for zones collected between
timest and t;
Number of particles at time t,

Integer power of diameter in A equa-
tion

Number of matrix rows over which
fraction collection takes place
Retention ratio

Minimum retention ratio used in the
calculations

Diameter-based selectivity

Molecular weight-based selectivity
Absolute temperature

density

density
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t Time

t, Retention time

to Void time

t/ Retention time obtained through back
caculation from d,

V) Fluid average velocity

W, t.,)  Window function

w Channel width

X The transverse coordinate of the chan-
nel

z The axia coordinate of the channel

7 Viscosity

0 Incident angle of scattered light

A Non-dimensional mean layer thick-
ness

A Ad”

Ain The minimum A corresponding to d,,,;,,

Oup Standard deviation of the apparent
size density function

oy Gaussian standard deviation of par-
ticle diameter

o, Time-based Gaussian standard devia-
tion at d,

ayls, The standard deviation of N(d,) at
time t,

ool The standard deviation of N(d,) for
zones collected between times t; and
ti+

oyl The average standard deviation of
N(d,) for zones collected between
timest and t;

o’ The zone variance due to finite width
time sampling

Ou Standard deviation of polymer molec-
ular weight

Ore Length-based standard deviation due
to non-equilibrium

a, Length-based standard deviation due
to polydispersity

X Non-dimensional non-equilibrium co-
efficient
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